Part of the Oxford Instruments Group
Expand

OptistatCF

A 4 K helium-flow, top-loading cryostat with sample in static exchange gas.

  • 3.4 - 300 K temperature range

  • Quick sample change via top-loading sample probe

  • Superb optical access


Request Pricing Add to quote list

  • Temperature range: 3.4 - 300 K. May be extended up to 500 K with the high-temperature window option and extended down to 2.2 K when used with a rotary pump (not supplied as standard)
  • Cooling to 4.2 K in about 25 minutes
  • Short sample change time via a top-loading sample probe - as quick as 5 minutes
  • Low liquid helium consumption: <0.55 L/h when used with a low-loss transfer siphon
  • Configured for reflectance and transmission measurements
  • Superb optical access for measurements requiring light collection
  • Large illumination area: 15 mm diameter window aperture
  • Compact size allowing easy integration into commercial spectrometers
  • Measurement-ready, via 10-pin electrical wiring to the sample
  • Supplied with a MercuryiTC temperature controller

Low cryogen consumption: Brings significant benefits in terms of running cost

Quick experiments: A range of sample holders and probes, including liquid cuvettes sample holders and height adjust/rotate probes, are available

Simple: The experimental windows and sample holders can be easily changed

Versatile: A range of window materials are available. Please contact your local sales representative for more information

Superior performance: A dynamic exchange gas model, suitable for low conductivity or high heat load samples, is available. Please contact your local sales representative for more information

Software control: Oxford Instruments electronics products are controllable through the software using RS232, USB (serial emulation), TCP/IP or GPIB interfaces. LabVIEW function libraries and virtual instruments are provided for Oxford Instruments electronics products to allow PC-based control and monitoring. These can be integrated into a complete LabVIEW data acquisition system

Temperature range: 3.4 to 300 K, may be extended up to 500 K and down to 2.3 K

Temperature stability: ± 0.1 K

System may also be run with liquid nitrogen, temperature range: 77 to 500 K

Liquid helium consumption rate at 4.2 K: < 0.55 l/hr

Cool down consumption: 1.5 litre (nominal)

Room Temperature to base temperature: approx. 25 min with pre-cooled transfer siphon

Sample change time: approx. 5 min (sample can be changed with the cryostat cold)

Weight: 3.7 kg

A typical system comprises of:

  • Cryostat
  • Sample holder
  • Spectroscopy windows 
  • MercuryiTC temperature controller

UV / Visible spectroscopy: Experiments at low temperatures reveal the interaction between the electronic energy levels and vibrational modes in solids.

Infra-red spectroscopy: Low temperature IR spectroscopy is used to measure changes in interatomic vibrational modes as well as other phenomena such as the energy gap in a superconductor below its transition temperature.

Raman spectroscopy: Lower temperatures result in narrower lines associated with the observed Raman excitations.

Photoluminescence: At low temperatures, spectral features are sharper and more intense, thereby increasing the amount of information available.

You may also be interested in...

Related Applications

´╗┐Nanomaterial Growth and CharacterisationCharacterisation of Low Dimensional StructuresModular Optical Spectroscopy

Upcoming events